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We consider a model with competing double-exchange �ferromagnetic� and superexchange �antiferromag-
netic� interactions in the regime where phase separation takes place. The presence of a long range Coulomb
interaction frustrates a macroscopic phase separation and favors microscopically inhomogeneous configura-
tions. We use the variational Hartree-Fock approach, in conjunction with Monte Carlo simulations, to study the
geometry of such configurations in a two-dimensional system. We find that an array of diamond-shaped
ferromagnetic droplets is the preferred configuration at low electronic densities, while alternating ferromag-
netic and antiferromagnetic diagonal stripes emerge at higher densities. These findings are expected to be
relevant for thin films of colossal magnetoresistive manganates.
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I. INTRODUCTION

In recent years, doped manganese oxides remained at the
forefront of theoretical and experimental research.1 The main
source of interest in these systems is the phenomenon of
colossal magnetoresistance �CMR�, which they exhibit and is
likely to have important technological applications. In the
meantime, the underlying basic physics remains elusive and
probably involves the strongly correlated nature of the doped
magnetic oxides. The CMR in doped manganates is observed
for intermediate hole-doping levels, typically 0.2�x�0.5,
in the temperature region around the transition between low-
temperature metallic ferromagnetic �FM� and high-
temperature insulating paramagnetic phases. In addition to
double-exchange ferromagnetism,2 the CMR compounds
also possess pronounced antiferromagnetic �AFM� tenden-
cies, as evident from the AFM spin ordering with Néel tem-
peratures of about 100–200 K, observed3,4 at the doping end
points �x=0 and x=1�. This antiferromagnetism is of a su-
perexchange origin.5

The manganates’ physics involves several degrees of free-
dom of substantially different natures, including localized
core spins Si of Mn ions, fermionic degrees of freedom as-
sociated with conduction eg electrons, lattice distortions, etc.
In such systems, the presence of competing interactions
�such as FM and AFM� often gives rise to phase
separation,6–9 whereby areas of different phases are stabi-
lized in a structurally and stoichiometrically homogeneous
sample. In the case of the manganates, it has even been
suggested7,10 that phase separation into insulating paramag-
netic and metallic FM phases may explain the resistivity
peak observed near the Curie temperature. In the present
paper, we focus on the low-temperature regime, where the
presence of phase separation in the appropriate manganate
systems has been directly verified, e.g., by means of
scanning-tunneling microscopy �STM� on thin films.11 Trans-
port measurements reveal metastability and history depen-
dence near the percolation threshold �x�0.2�, confirming
phase separation in both film12,13 and crystalline14,15 samples.

Using simple microscopic models,2,16 it can readily be
shown16 that the hole concentration x indeed controls the

balance between the FM and AFM tendencies of the system.
Once x is tuned away from the optimal CMR doping region,
the homogeneous FM metallic state no longer corresponds to
the energy minimum. Instead, energy can be gained by
changing the magnetic ordering, carrier density, band struc-
ture, and/or orbital state in part of the system, making the
sample inhomogeneous.6–9,16,17 The surface tension between
different phases16,18 then competes against the long range
interactions present in the system in the form of electrostatic
forces6,16,19,20 or long range crystal strain fields.21,22 These
require that the system remain homogeneous at least on av-
erage on the appropriate length scale �such as the Debye-
Hückel screening length�, resulting in a periodic arrangement
of nano- or mesoscopic regions of different phases.6,7 The
geometry of the ensuing inhomogeneous �phase-separated�
state is the focus of our present study.

Early studies of phase separation in double-exchange–
superexchange systems6,16,23 implicitly assumed that the ef-
fects of the discrete lattice are unimportant, and consequently
treated the problem within the continuum-based, long-
wavelength approach. Within this framework, the optimal
phase-separation geometry at small values of the FM volume
�or area� fraction m �also the average magnetization per site�
is obviously that of spherical �in two dimensions, circular�
FM droplets located at the sites of a packed hexagonal �tri-
angular� superlattice. To the best of our knowledge, only the
three-dimensional case was treated in detail, with the impli-
cation that in two dimensions the situation is similar. When
the system parameters are varied in such a way that m in-
creases beyond 1/2, the geometry changes to that of spherical
AFM droplets in an otherwise FM matrix. The change gen-
erally occurs via a direct “geometrical phase transition” 23

without any intervening regime characterized by both phases
forming infinite connected shapes �such as filaments and pla-
nar slabs in three dimensions or stripes in two
dimensions�.6,16,24

This latter conclusion is important since such slab or
stripe arrangements, if realized, would have been character-
ized by peculiar and potentially useful properties such as
history-dependent anisotropy of the ground-state resistivity.
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However, the continuum treatment, which is the basis of this
result, is not valid beyond the region of very small values of
x�1. Indeed, recent studies suggest17,18 that the boundary
between the two phases is abrupt on the lattice-spacing scale
�i.e., of the type commonly associated with Ising spin sys-
tems�. Such a boundary cannot be adequately described in
the continuum limit, and its surface tension depends on its
orientation with respect to the crystalline axes.18 This direc-
tional dependence of boundary energies should in turn affect
the droplet shape �generally favoring diamond-shaped drop-
lets in two dimensions�,18 the arrangement of droplets in
space, and ultimately the way the geometry of phase separa-
tion evolves with varying m. This is apparently a generic
property of electronic phase separation, found also within the
frameworks of Falikov-Kimball25 and t-J �Ref. 26� models.

In the present paper, we revisit the problem within the
framework of a single-orbital double-exchange–
superexchange Hamiltonian �with infinite Hund’s coupling
JH�, augmented by a long range Coulomb interaction term.
Using a variational Hartree-Fock �HF� approach, we com-
pute the energies of various two-dimensional droplet and
stripe phases corresponding to a FM area fraction m�1 /2,
and determine the optimal configuration. Our most important
finding is that while a droplet lattice exists at low doping
levels, a striped arrangement has a lower energy and is there-
fore stabilized over a broad region of the phase diagram. As
anticipated from our previous results concerning the orienta-
tional dependence of the boundary energy,18 we find that
diamond droplets and diagonal stripes are the preferred ge-
ometries for the FM regions of the inhomogeneous states.
These conclusions gain further support from unrestricted
Hartree-Fock calculations which we have carried out using
Monte Carlo �MC�–simulated annealing on moderate-size
clusters. The simulations also demonstrate the existence of
inhomogeneous states comprised of AFM droplets �or
stripes� embedded in a FM background �m�1 /2�, at higher
doping levels. While our results pertain to the two-
dimensional case, it is likely that qualitatively our conclu-
sions would also apply to three-dimensional systems. Spe-
cifically, we suggest that a phase-separated state with
filament or slab geometry �rather than a lattice of droplets� is
realized for a certain range of parameters in three dimen-
sions.

In addition, we find that the typical droplet size and stripe
width do not exceed several lattice constants. This means
that the motion of the charge carriers is strongly quantized,
rendering droplets midway between metallic bulk and mag-
netic polarons27 and giving rise to singularities in the stripe
energy associated with the quantization of the transverse ki-
netic energy. This important property was not included in the
earlier work,6,16,23 which assumed sufficiently large length
scales for such quantum effects to be negligible. Our ap-
proach, on the other hand, allows one to explore the cross-
over between the regime of singly-occupied magnetic po-
larons, which appear for strong Coulomb and AFM
couplings, and the more conventional phase-separation be-
havior where each metallic droplet is populated by many
charge carriers.

The paper is organized as follows: in Sec. II, we introduce
the model and briefly review the physics underlying phase

separation and magnetic-polaron formation in the absence of
a long range force. A brief description of the calculational
methods which were implemented in order to include the
effects of the long range Coulomb repulsion appears in Sec.
III, while the mass of details is relegated to Appendixes A
and B. Section IV contains a detailed description of our
Hartree-Fock and Monte Carlo results. We conclude with a
brief discussion of the results in the context of current ex-
perimental and theoretical work �Sec. V�. While an arrange-
ment of conducting and insulating stripes in doped mangan-
ate films has not yet been observed, we suggest that present
experimental knowledge should allow for a meaningful and
successful research effort in this direction.

II. MODEL AND ITS PROPERTIES IN THE
NONINTERACTING LIMIT

The starting point for the following calculation is the two-
dimensional double-exchange Hamiltonian, generalized to
include the superexchange coupling and the long range Cou-
lomb interaction,

H = −
t

2 �
�i,j��

�ci�
† cj� + H.c.�

+
J

S2 �
�i,j�

Si · S j −
JH

2S
�

i,�,�
Si · �ci�

† ���ci��

+ U �
i�j,�,�

1

�ri − r j�
�ci�

† ci� − x��cj�
† cj� − x� . �1�

Here t is the nearest-neighbor hopping amplitude and cj�
annihilates a conduction electron of spin �= ↑ ,↓ at site j of
a square lattice. Si denotes the core spin made of three
d-shell electrons �S=3 /2� localized at site i, whose AFM
superexchange interaction with neighboring core spins is
given by the second term in H. The third term arises from
Hund’s coupling between the core spins and the conduction
electrons, where the spin operator for the conduction elec-
trons on site i involves the Pauli matrices �. It is this term, in
conjunction with the fact that the hopping preserves the elec-
tronic spin, which gives rise to the double-exchange mecha-
nism. This favors a FM spin configuration in order to reduce
the conduction electrons’ kinetic energy.2 The last term in-
cludes the Coulomb interaction among the conduction elec-
trons, whose average density is x, and a neutralizing uniform
positive background, created by the donors. Owing to the
long range nature of the Coulomb interaction, the atomic-
scale inhomogeneities of this background in real systems
�created by chemical substitution� are not expected to be im-
portant from the point of view of our main purpose of com-
paring the energies of various inhomogeneous phases. This is
because such energies always involve integration over vol-
ume.

In using the simplified model, Eq. �1�, we neglect some
additional physics characteristic of the CMR manganates.1

This includes the presence of two �rather than one�
conduction-electron eg bands and the electron-lattice cou-
pling. The logics behind this simplification are summarized,
e.g., in Ref. 9: it is assumed that the mechanism for phase
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separation �charge ordering� is the competition between
ferro- and antiferromagnetism in the presence of a long range
Coulomb repulsion �all contained in Eq. �1�	. Once the
charge ordering is established, in a real system the orbital
ordering �and the lattice distortions� would follow, leading to
a quantitative renormalization of the parameter values. The
model, Eq. �1�, is however expected to suffice for a qualita-
tive study of the generic features of the phase diagram while
its simplicity allows one to maintain clarity of analysis. Fur-
ther arguments regarding the expected model independence
of our conclusions shall be given in Sec. V.

The relatively large value S of the Mn core spins means
that their fluctuations are small, particularly in the T→0
limit considered here. In the following we assume S�1 and
treat the core spins classically. Consequently, the effective
Hamiltonian governing the physics of the conduction elec-
trons is determined by the configuration of the classical spins

Si�. As far as Hund’s coupling is concerned, the manganates
are characterized by a moderate bare JH� t. However, they
also include a strong Hubbard on-site repulsion, U0� t,
which significantly renormalizes JH toward the strong-
coupling limit.28 Therefore, while we omit the Hubbard in-
teraction from our Hamiltonian �1�, we model its effects by
taking JH→�.

Band-theory calculations9,29 suggest that typical values of
the hopping amplitude t in the CMR manganates lie between
0.3 and 0.5 eV. The value of J can be roughly estimated from
the experimentally observed Néel temperatures in the fully
doped or undoped �with no conduction eg electrons or with
no holes� case,3,4 TN�100–200 K, corresponding to J
�5–10 meV. The long range Coulomb interaction strength
U for thin films is evaluated as U=e2 / �a0�̄�. Here, e is the
electron charge and a0�3.9 Å is the lattice spacing. The
effective dielectric constant �̄ is given by the average of di-
electric constant �s of the substrate and that of the air, �̄
= ��s+1� /2. Among the substances which can be used as sub-
strates for manganate films, lanthanum aluminate and neody-
mium gallate have30,31 �s�23 and �s�20, yielding U
�0.31 eV and U�0.35 eV, respectively. Dielectric proper-
ties of the third possible substrate, strontium titanate, are
strongly dependent on temperature, with30,32 �s changing
from 24 000 �corresponding to U�0.31 meV� at 4.2 K to
�s�277 �U�0.027 eV� at 300 K. This suggests the possi-
bility of experimentally varying the value of U by using
different substrates and/or changing the temperature.

Theoretical investigations of the double-exchange–
superexchange competition have a history of more than 40
years. It is by now firmly established6,7,17 that this competi-
tion is resolved not via a second-order phase transition from
the FM state to a uniform state with a helical or canted mag-
netic ordering, but rather via separation of the sample into
regions characterized by different spin arrangements and
conduction-electron band structures. We will be interested in
the case of phase separation into FM and AFM regions with
abrupt Ising-type boundaries17,18 between them. This means
that the resulting configuration of Si remains collinear, with
all core spins either parallel or antiparallel to a selected di-
rection. Thus, it is possible to denote a spin state simply as
Si /SSi= 	1, and the Hamiltonian of the conduction elec-
trons becomes a function of 
Si�. The large Hund’s exchange

coupling then forces the conduction electrons’ spins to polar-
ize parallel to the core spins, resulting33 in the following
distribution of hopping amplitudes for a given spin configu-
ration 
Si�:

tij�
Si�� = �− t , i, j nearest neighbors and Si = Sj

0, otherwise.
�

�2�

After these simplifications, the Hamiltonian takes the form

H�
Si�� =
1

2 �
�i,j�

�tij�
Si��ci
†cj + H.c.� + J�

�i,j�
SiSj

+ U�
i�j

1

�ri − r j�
�ci

†ci − x��cj
†cj − x� . �3�

The model, Eq. �3�, on the �bipartite� square lattice is invari-
ant under the particle-hole transformation ci

†→ �−1�pci, and
x→1−x, where p takes the values 0 and 1 on the two sub-
lattices. As a result we note that in the following, x acquire
the more general meaning of a carrier density, i.e., either the
electronic density or the hole density relative to the half-
filled state. We will now briefly review the ground-state
properties of Hamiltonian �3� at U=0.

When the carrier density x is finite, the ground state of the
system at J→0 is uniform and FM. With increasing J be-
yond a certain critical value Jc�x�, this uniform FM state
eventually becomes destabilized, and a nonuniform ground
state is obtained instead. In this phase-separated state only
part of the system is occupied by the FM phase. We will be
interested in the case in which the other part is a simple Néel
antiferromagnet with zero charge-carrier density. A varia-
tional study17 showed that in two dimensions such a phase-
separated state may be realized only for J
J��0.036. At
higher values of J the magnetic ordering in either the
electron-rich or the electron-poor regions of the sample dif-
fers from that of a ferromagnet or a Néel antiferromagnet.

Thermodynamic equilibrium between macroscopic FM
and AFM regions means that the thermodynamic potentials
in the two phases are equal,

�FM = �AFM, �4�

where

�FM = �
−�

�

� − ��g��d + 2J �5�

and

�AFM = − 2J . �6�

g�� is the density of conduction-electron states in the FM
region. Since the latter is large, g�� can be taken to be the
two-dimensional tight-binding density of states, and bound-
ary corrections may be neglected. By solving Eqs. �4�–�6� for
the Fermi energy �, one readily obtains the carrier density in
the FM region, xFM, via
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xFM = �
−�

�

g��d , �7�

with the result depicted in Fig. 1. The system remains in a
uniform FM state as long as xFM�J�
x. The fraction of the
system area �or volume� occupied by the FM phase is given
by m=x /xFM. The critical value Jc for the onset of phase
separation is then determined by the condition xFM�Jc�=x.

In addition to the macroscopic phase separation as de-
scribed above, the double-exchange–superexchange compe-
tition can also be resolved via an altogether different sce-
nario �formation of magnetic polarons�. When a single
electron �or hole� is lodged into an antiferromagnetically or-
dered double-exchange magnet with zero charge carriers �x
=0�, a free �self-trapped� magnetic polaron, or
ferron,6,27,34–38 is formed around it. It is essentially a micro-
scopic FM region, containing one charge carrier, in an oth-
erwise AFM system. Since the propagation of charge is un-
impeded in the FM region, it acts as a potential well for the
sole carrier, which occupies the lowest bound state inside the

well. The polaron binding energy Emp �with respect to the
state where the AFM order is unperturbed� can be easily
estimated.27 We consider the case of a diamond-shaped po-
laron, with L+1 sites along each side �see Fig. 2, upper left�.
For L�1 we find

Emp�L� = − 2t +
t

2
� �

L + 1
�2

+ 8L2J , �8�

where the first two terms are the ground-state energy of the
charge carrier and the last one represents the superexchange
contribution. Expression �8� should be minimized with re-
spect to L, resulting in

Emp = − 2t + 4��Jt . �9�

Here, the coefficient of the second term depends on the ge-
ometry of the FM microregion �e.g., for a round polaron, one
would have obtained 12.06 instead of 4��.

The above expressions are valid in the J / t�1 regime
�yielding L��t /J�1/4�1	, where it is easy to verify an im-
portant statement which is expected to hold for all J.
Namely, if in the absence of a Coulomb interaction U, a
second carrier is added to the system, it is energetically fa-
vorable for the two charge carriers to occupy the two lowest
bound states in a shared FM microregion rather than to form
two independent polarons. This conclusion is verified by cal-
culating the binding energy of the �diamond-shaped� doubly-
occupied polaron,

Emp
�2� = − 4t + 4��7Jt/2, �10�

which clearly satisfies Emp
�2� 
2Emp. This trend continues

when further charge is added, and at n�1 the binding energy
�per carrier� of the n-carrier polaron decreases toward the
limiting value Eps,

0

0.05

0.1

0.15

0.2

0 .005 .01 .015 .02 .025 .03

x
F

M

J

FIG. 1. The charge-carrier density xFM in the FM region of a
macroscopically phase-separated state.

FM Region Shape Super-Lattice Structure

L L a

a

a

a

W W

D D

FIG. 2. �Color online� The geometry of the inhomogeneous configurations considered in the variational Hartree-Fock calculation. The
dashed lines indicate the superlattice unit cell.
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1

n
Emp

�n� → Eps, �11�

which is the energy gain per carrier associated with the mac-
roscopic phase-separated state. The latter can be evaluated as

Eps =
EFM − EAFM

xFM
, �12�

where EFM���=�−�
� g��d+2J and EAFM=−2J are the en-

ergies per site of the FM and AFM phases. Using Eqs. �4�
and �7� to evaluate � and xFM we find, in the limit J� t,

Eps = − 2t + 4��Jt . �13�

The inequality Eps
Emp implies that for any finite carrier
density, at U=0, the double-exchange–superexchange com-
petition is resolved via macroscopic phase separation.

Notwithstanding the preceding discussion, its conclusion
may change if a realistically strong Coulomb interaction U is
included, favoring a large spatial separation between the
charge carriers. Indeed, as we demonstrate in the following, a
polaronic state arises in the regime of large U and small
carrier density. It is the extreme limit of a broad range of
inhomogeneous states which originate from the frustration of
macroscopic phase separation by long range forces. The
study of this intermediate region of parameters lies at the
focus of the remaining part of the paper. Since the typical
size of the resulting FM regions is rather small, one needs to
take into account the effects of quantization of the charge-
carrier motion. At the same time, some of the results ob-
tained for the macroscopic phase-separated system, such as
the directional dependence of the boundary energy,18 still
offer important guidance for the understanding of the inho-
mogeneous configurations. Next, we outline the methods
used to treat this intermediate regime which is characterized
by a combination of both traditional phase separation and
magnetic-polaron �quantized� physics.

III. METHODS

A. Variational Hartree-Fock approach

Given Hamiltonian �3�, our task is to find the configura-
tion of core spins in the ground state. However, there is a
vast multitude of possible spin configurations among which
the ground state is to be sought, making it impossible to
explore all of them. Nevertheless, previous studies of similar
or related systems39 suggest several families of highly sym-
metrical configurations as reasonable ground-state candi-
dates. The two main types of spin configurations studied in
this work are FM droplets in an AFM background and alter-
nating FM and AFM stripes, as illustrated in Fig. 2. A uni-
form FM phase, in which the double-exchange mechanism
completely overcomes the superexchange, is also considered.

Calculating the energy of the conduction electrons in a
given configuration of core spins is a difficult problem. Here
we suffice with the HF approximation, which gives an upper
bound to their ground-state energy. Since we are dealing with
periodic spin configurations, the HF equations for the whole
system can be rewritten as an effective eigenvalue problem

within a single unit cell. The superexchange contribution to a
configuration’s energy is simply calculated by counting the
number of FM and AFM bonds in a unit cell.

Based on previous analytical results18 and numerical
investigations,39 the considered droplets are either diamond
or square shaped and are chosen to form either a triangular or
square superlattice �see Fig. 2�. Several droplet phases are
possible by combining different droplet shapes and superlat-
tice types. In addition, one has variational freedom to specify
L, the size of the FM droplets, and n, the number of conduc-
tion electrons in each of the droplets. The distance between
the droplets, a, is then uniquely determined by the type of
superlattice, by n, and by the average density of conduction
electrons, x.

The energy of each droplet phase is found by minimizing
its energy density,

Edroplet = x
EHF,droplet

n
+ EJ,droplet, �14�

with respect to the variational parameters, L and n. Here
EHF,droplet is the HF energy of the conduction electrons inside
a unit cell containing a single droplet, and EJ,droplet is the
AFM energy per site. The details of the HF calculation ap-
pear in Appendix A. The main source of complication is the
necessity to take into account the Hartree interaction between
electrons belonging to different droplets in the infinite super-
lattice. This is done by employing Ewald’s summation
method �see Appendix B�. The AFM coupling energy per
lattice site is

EJ,droplet = �− 2J�1 −
4L2

A
� , diamond droplets

− 2J�1 −
5L2 − 8L + 8

A
� , square droplets, �

�15�

where A=n /x is the area of a unit cell.
Two types of stripe phases were considered: diagonal and

bond aligned. Additional variational freedom comes from the
need to specify W, the stripe width, and xFM, the �average�
density of conduction electrons within the FM stripe. Just as
for the droplet phase, the stripe phase energy is found by
minimizing its energy density

Estripe = x
EHF,stripe

�
+ EJ,stripe �16�

with respect to W and xFM. Here � and EHF,stripe are, respec-
tively, the conduction electrons’ number and energy per unit
cell, and EJ,stripe is the AFM energy per site. A unit cell in
diagonal stripes is only one lattice spacing long in the direc-
tion along the stripe, and two spacings long in bond-aligned
stripes �see Fig. 2�; its width equals the stripe periodicity.
Therefore,

� = �xFMW , diagonal stripes

2xFMW bond-aligned stripes.
� �17�

�, together with x, uniquely determine the distance between
stripes D.
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In a similar manner to the case of the droplet phase, when
calculating the HF energy, one needs to take into account the
Hartree interaction between the infinite number of unit cells
in the systems. Moreover, the extended nature of the states
along the stripes means that it is necessary to consider also
the Fock exchange between different unit cells on the same
stripe. A detailed account of the way this is done is presented
in Appendix A. The AFM spin coupling energy per unit area
for both diagonal and bond-aligned stripe phases is

EJ,stripe = − 2J�1 − 2m�2 −
1

W
�� , �18�

where m=x /xFM is the fraction of FM regions in the system.
By comparing the energies of all the above-mentioned
phases, a phase diagram is constructed, depicting the nature
of the ground state as a function of the external parameters,
x, J / t and U / t.

B. Monte Carlo–simulated annealing

We have supplemented the calculation of the HF energy
of various variational configurations by an unrestricted HF
calculation using Monte Carlo–simulated annealing. In this
method, the energy of a finite-size system is minimized with
respect to the full configuration space of core spins, rather
than a special subset of spin textures. In each Monte Carlo
step the energy of a given configuration of classical core
spins is evaluated using the HF approximation. A spin con-
figuration is accepted as the system’s new state if the change
in energy from the current state satisfies the Metropolis con-
dition. The temperature is slowly decreased until the system
reaches a stable low-energy configuration. If the temperature
is decreased slowly enough, the final state is the HF approxi-
mation of the ground state.

The underlying assumption of the present study is that the
system indeed separates into FM and AFM regions with an
abrupt boundary between them. Therefore, the MC simula-
tion needs to explore only such configurations, improving the
convergence time. This can be achieved by setting all the
spins on one sublattice to the “up” state, and incrementally
flipping the spins on the other sublattice. An additional im-
provement comes from an algorithm used to decide which
spin to flip. At first, a spin is chosen randomly. It is flipped if
the resulting state satisfies the Metropolis criterion. If the
spin is located near a FM-AFM boundary, then its neighbors
are added to a queue of spins to be tested for flipping. After
all the spins in the queue have been tested for a flip, a new
spin is chosen randomly. Requiring that a spin be added to
the queue no more than once prevents the simulation from
repeating itself, thus maintaining ergodicity.

In our calculations, the system contained 24�24 sites ar-
ranged periodically on a torus. A linear annealing schedule
was employed over 50–100 MC sweeps, and an identical
number of sweeps at the lowest temperature allowed the sys-
tem to thermalize into the ground state. The temperatures
started from above 1.5J at the beginning of the annealing
schedule to below 0.5J at its end.

Even though this method minimizes the system’s energy
with respect to an unrestricted configuration space, it has a

number of disadvantages when compared to the variational
HF method, applied to only a number of special configura-
tions. First, its periodicity is fixed; in our case it is 24 sites
along each axis. In addition, the presence of long range in-
teractions causes the simulations to converge very slowly.
Nevertheless, it provides an important reference point with
which the variational HF results may be contrasted, espe-
cially in order to confirm that the variational manifold con-
tains the most relevant configurations.

IV. RESULTS

In the present section, we present and analyze our numeri-
cal results. The coupling constants J and U are measured in
units of t, by setting the hopping amplitude t=1. The HF
energies of all the considered phases were calculated in the
parameter range x�0.1 and J�0.03, and for three values of
U, namely, U=0.025,0.075,0.25. We chose to concentrate
on this region on the x-J plane for two reasons. As already
mentioned, a previous estimate17 sets J�=0.036 as the upper
limit for the realization of a FM–Néel AFM �as opposed to
other types of magnetic ordering� phase-separated state in
two dimensions. Second, our calculations indicate that the
line x /xFM=1 /2 crosses J=0.03 at x�=0.1; see Fig. 3. The
region below this line on the x-J plane corresponds to con-
figurations in which the FM phase occupies more than half
the system area. While the stripes’ phases, which we con-
sider, continue to be relevant in this region, we expect �and
confirm in our MC simulations� that the phases of FM drop-
lets ought to be replaced by configurations of AFM droplets
embedded in a FM background. The latter turn out to be
more involved computationally and were left out of the
present study. We also wish to note that the above values of
J� and x� are sensitive to the details of the considered model.
Therefore, while experimentally percolation of the metallic
phase at low temperatures is observed in manganates with
x�0.18, we expect our qualitative conclusions to apply to
more complicated models of manganates as long as phase
separation into FM and AFM phases is possible.

We begin our review of the results by discussing the
phase diagram and presenting general arguments for its
structure. We then move on to consider the details of the
most dominant phases.

A. Phase diagram

The main result of our calculation is the phase diagram,
Fig. 3, derived from the variational HF approach and depict-
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FIG. 3. �Color online� The HF phase diagram: DD—a triangular
lattice of diamond-shaped droplets; SD—a square lattice of square
droplets; DS—diagonal stripes; and FM—a uniform ferromagnet.
The black lines correspond to x /xFM=1 /2.
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ing the system’s ground-state configuration as a function of
the parameters x, J, and U. It demonstrates that diamond
droplets in a triangular formation is the preferred phase at
low densities, while diagonal stripes are prevalent at higher
values of x. This stability of a striped phase is the most
important result of our calculation. The striped arrangement
is expected to possess unusual and potentially useful proper-
ties �see Sec. V, where we also mention possible directions of
experimental search for the stripe phase in CMR mangan-
ates�. When the Coulomb interaction strength U is increased,
the transition between droplets and stripes occurs at higher x.
As discussed above, our variational approach becomes insuf-
ficient below the line x /xFM=1 /2, as we do not allow for a
phase of AFM droplets embedded in a FM background. Such
a phase is expected to appear near the transition to the uni-
form FM state. This conclusion is supported by the uncon-
strained HF results presented below. We are unable, though,
to map in detail the boundary between the stripe and droplet
phases in this parameter regime.

The general features of the phase diagram can be ex-
plained by simple energy considerations. The preference of
diagonal stripes and diamond droplets is a direct result of the
lower energy of diagonal boundaries, as previously estab-
lished by two of the authors.18 The appearance of a triangular
droplet lattice at low densities is akin to the physics giving
rise to the Wigner crystal in a dilute gas of electrons. Next,
we elaborate on the reasons and nature of the transition be-
tween the droplet and stripe phases.

To this end, let us examine how the energy difference
between the two phases evolves with x. As x increases, the
distance between droplets or stripes diminishes, but our HF
results indicate that the size of these FM regions and the
electron density within them, xFM, vary slowly in the vicinity
of the phase transition. The combined difference between the
kinetic and magnetic energies per electron of the two phases,
�, depends on xFM and on the size and shape of the FM
regions, but not on the distance between them. We therefore
conclude that at the qualitative level, changes in � with x
cannot be the driving force behind the transition. Instead, we
concentrate on the doping dependence of the difference in
the Coulomb energy per electron between droplets and
stripes, ��.

The Coulomb energy contains contributions coming from
the interaction between charges within a single superlattice
unit cell and between different cells. The neutrality of each
unit cell �due to the positive background� implies that the
dominant contribution to the Coulomb energy per electron
originates from the intracell component. Simple dimensional
analysis allows us to obtain an estimate for its behavior. The
amount of positive background charge within a droplet unit
cell is xa2, a being the interdroplet spacing. Thus, the Cou-
lomb potential due to the positive background is �droplet

+ �
−Uxa. The interaction between electrons within a droplet
generates �droplet

− �UxFML, where L is the droplet size. Since
mx /xFM�L2 /a2, we have

�droplet = �droplet
− + �droplet

+ � UxFML�1 − �m� . �19�

The Coulomb energy in the stripe phase takes a different
form. The amount of charge per unit length is xFMW=xD,

where W and D are the stripe width and the distance between
stripes, correspondingly. The background potential is then
�stripe

+ �UxFMW ln D and the potential due to electrons in the
same stripe is �stripe

− �−UxFMW ln W. Together they give

�stripe = �stripe
− + �stripe

+ � − UxFMW ln m , �20�

where in this case m=W /D. Consequently, the difference in
Coulomb energy per electron between the droplet and stripe
phases has the form

��  �droplet − �stripe � UxFM�KdL�1 − �m� + KsW ln m	 ,

�21�

where Kd and Ks are numerical constants characterizing the
geometry of droplets and stripes, respectively. It is implicitly
assumed in Eq. �21� that in the transition region between the
phases xFM is the same for both configurations �the HF cal-
culation shows that this is correct up to 20%�. The transition
itself takes place at m�, satisfying

���m�� + � = 0, �22�

where we have used the constancy of � near the transition.
If 2KsW�KdL then �� is a monotonously increasing

function of m �in the physical range 0
m
1�; see Fig. 4. In
this case at most a single solution m� exists for condition
�22�, implying that the droplet phase is preferred when m

m�, while stripes occur for m�m�; the area of the droplet
phase increases with U. On the other hand, if 2KsW
KdL,
�� acquires a maximum and two solutions, m1

� and m2
�, may

appear. Under such conditions a re-entrant behavior follows;
i.e., droplets are preferred when m
m1

� or m�m2
�, and

stripes are realized in the region m1
�
m
m2

�, which grows
with increasing U. We note that in any case the existence of
a solution to condition �22� crucially depends on the value of
�. It is the latter which reflects the features taken into ac-
count in the present work �viz., the orientational dependence
of the boundary energy and the quantization of the carrier
motion.�

Figure 5 shows HF results for �� and �−�� as functions
of x for various values of J. Transitions between droplet and
stripe phases occur when ��=−�. The division into dis-
continuous segments is due to changes in the properties of
the stripes or droplets �the optimal values of W, L, and xFM;

2KsW > KdL

0

0 0.2 0.4 0.6 0.8 1

∆
φ

m

2KsW < KdL

FIG. 4. Dimensional analysis form of �� as a function of m,
demonstrating the difference between the two possible branches.
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see below�. However, the transitions generally do not occur
at these points of discontinuity, leading to our previous as-
sertions concerning the constancy of � and the dominant
role of the Coulomb interaction in the vicinity of the transi-
tion. The first two transitions at J=0.014 and J=0.0165 are
near a maximum in ��, demonstrating the 2KsW
KdL
branch behavior. Whereas these transitions occur on one con-
tinuous segment, the third transition occurs on a different
segment, where only one solution exists. Other one-solution
transitions are shown for J=0.0225 and J=0.0275.

B. Droplet phase

In general, a triangular lattice of diamond-shaped droplets
proved to be energetically more favorable than the other
types of droplet phases. As noted before this is a conse-
quence of the directional dependence of the FM-AFM
boundary energy and the minimization of the interdroplet
Coulomb energy. Figure 6 shows the optimal droplet size L
and the number of conduction electrons per droplet, n, as
deduced from the variational HF calculation. Increasing the
strength of the Coulomb repulsion has the obvious effect of
decreasing the droplet size. Specifically, for the case of U
=0.25 the variational study yields very small �L=1,2�

singly-occupied droplets in the regime of low x and interme-
diate to large J. Comparing their energy to the other types of
inhomogeneous states reveals that these magnetic polarons
are in fact the lowest-energy configuration in this region of
parameters; see the HF phase diagram, Fig. 3.

C. Stripe phase

Figure 7 shows the optimal stripe width W and
conduction-electron density xFM for diagonal stripes. The lat-
ter are more favorable than their bond-aligned counterparts
due to the orientation dependence of the boundary energy.
One striking feature in these HF results is the existence of
abrupt transitions in the stripe width. A small increase in x
may lead to a discontinuous change in W. On the other hand,
increasing J typically leads to changes in W which are less
steep. The electron density within the FM stripes, xFM, var-
ies, in general, very slowly with x and increases with J.

We use the condition of thermodynamic equilibrium, Eq.
�4�, between a diagonal FM stripe and its AFM environment
to explain these features. The kinetic-energy contribution to
the stripe’s thermodynamic potential is determined by its
noninteracting spectrum consisting of W bands �correspond-
ing to the quantization of transverse electron motion within
the stripe�,

b�k� = − tb cos� k

2
� , �23�

where tb is the bandwidth of band b=1¯W,

tb = 2t cos� b�

W + 1
� . �24�

The resulting density of states in band b is then

gb�� =
2

�tb

1
�1 − �/tb�2

, �25�

which together with the chemical potential � determines the
number of electrons, nb, per unit length in the band. Since we
are interested in relatively low doping levels, we consider the
lower W /2 bands for which

J = 0.0165
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FIG. 5. �Color online� �� and −� as functions of x as obtained
from the HF calculation for U=0.075 and various values of J. Be-
low each plot are colored bands showing the ground-state configu-
ration at the corresponding x values: green �light�—droplets; and
blue �dark�—stripes. The transitions occur when ��=−�.
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nb = �
−tb

�

gb��d =
2

�
cos−1�−

�

tb
� , �26�

and the noninteracting electronic contribution to the total en-
ergy is

Eb = �
−tb

�

gb��d = −
2tb

�
sin��nb

2
� . �27�

Using these terms, the thermodynamic potential in the FM
stripes is

�FM�W� =
1

W
�

b

�Eb − �nb� + 2J�1 −
2

W
� , �28�

where the second term is the magnetic energy, taking into
account the structure of the boundaries. �AFM remains the
same as for an infinite AFM region �Eq. �6�	. Figure 8 shows
xFM=�bnb /W evaluated at the Fermi energy � which solves
�FM�W�=�AFM as a function of J and W.

Points of nonanalyticity occur whenever the chemical po-
tential increases beyond the bottom of a band, �=−tb, so that
the carriers begin to fill this additional band. These nonana-
lyticities result in a corrugated landscape for xFM�W ,J�,
shown in Fig. 8, whereby several values of W may corre-
spond to the same xFM. Thus, a small increase in x may drive
an abrupt change in W but leave xFM constant. This transition
is accompanied by a change in the number of partially filled
bands within the stripe, as depicted by the black contours in
Fig. 7.

D. Simulation results

Although our Monte Carlo results are not sufficient for
constructing the phase diagram, they yield convincing evi-
dence that the phases included in the variational HF calcula-
tion are indeed the appropriate variational phases to consider.
Some examples of ground states obtained by MC-simulated
annealing are given in Fig. 9. Note that the moderate cluster
size used in the simulation induces finite-size effects appar-
ent, for example, in the imperfections of the stripe configu-
rations. These results, in addition to results from other simu-
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FIG. 8. xFM in diagonal stripes of width W as imposed by ther-
modynamic equilibrium.

(a) (b)

(c) (d)

FIG. 9. �Color online� Electron density in ground states reached using simulated annealing. Top left: x=0.0278, J=0.015, and U
=0.075. Top right: x=0.0486, J=0.02, and U=0.05. Bottom left: x=0.0556, J=0.015, and U=0.05. Bottom right: x=0.0833, J=0.01, and
U=0.05. Dark lines outline FM-AFM boundaries.
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lations done at other parameter values, agree with the general
structure of the phase diagram in Fig. 3. Moreover, the un-
restricted nature of the MC method yields also configurations
with AFM droplets in a FM background �bottom right of Fig.
9�. As mentioned before, such states were not considered in
the variational HF approach because of the relative difficulty
in calculating their HF energy. Nevertheless, there are rea-
sons to believe, as confirmed by the simulations, that such a
phase indeed exists around the transition line between the
striped and uniform FM phases, where m=x /xFM�1 /2.

V. DISCUSSION

The main finding of this paper concerns the geometry of
the low-temperature phase-separated state in a two-
dimensional double-exchange magnet. We did not invoke
any lattice or orbital degrees of freedom but instead concen-
trated on the effects of the ubiquitous long range Coulomb
interaction. We verified that when the relative area occupied
by the FM phase, x /xFM, is sufficiently large, a striped ar-
rangement �rather than a droplet superlattice� is stabilized.
Our results also confirm the expectation, based on a previous
analysis of the directional dependence of the FM-AFM
boundary energy,18 that diamond-shaped droplets and diago-
nal stripes are preferred over their square and bond-aligned
counterparts. Indications to this effect are also present in
other numerical studies of double-exchange models.39

The stability of the stripe phase should not come as a
surprise. In fact, even in the earlier studies, which considered
the continuum limit,6,16 it was noted that the energies of the
stripe and droplet configurations can be very close, although
no parameter window was found where stripes would corre-
spond to the lowest-energy configuration. As a result, it is
conceivable, as indeed was shown in Ref. 40, that a stripe
phase may be stabilized, even in this limit, once physics due
to some sort of additional degrees of freedom is taken into
account. Stripes also occur naturally in other models, such as
t-J or Hubbard,41 which involve a competition between the
AFM nature of a parent undoped state and the kinetic energy
of the doped charge carriers. Long range AFM interaction
was found to favor stripes in the FM Ising model.42 Regard-
ing the case of a pure double-exchange system with Cou-
lomb repulsion considered here, it has already been
argued18,20 that the correct treatment of the boundaries be-
tween the FM and AFM regions is likely to tilt the balance in
favor of a striped arrangement.

In the present work, we considered the experimentally
relevant case of nanometer-size FM inclusions �comprising
only a few lattice periods�. Besides mapping the evolution of
the geometry of the inhomogeneous system, we addressed
the long-standing question regarding the stability of free
magnetic polarons. As expected, we find polaronic behavior
in the region of small carrier concentration x�1 and strong
Coulomb interaction. Away from this regime, individual
magnetic polarons coalesce into larger FM areas. We were
able to span the entire intermediate regime between the con-
ventional phase separation �where the quantized character of
the carrier motion becomes unimportant� and an array of free
magnetic polarons �for which the notion of thermodynamic

equilibrium between FM and AFM phases becomes irrel-
evant�. We emphasize that the two main physical ingredients
underlying our findings, namely, the quantized electronic
motion in small FM regions and the directional dependence
of the boundary energy, can be viewed as largely model in-
dependent. Therefore, our present conclusions can be ex-
pected to stand for any double-exchange model with a long
range interaction, including the case where the latter origi-
nates from crystal strain fields.21,22

The bulk of our study was carried out using a variational
HF approximation for the energy of various droplet and
stripe phases. It was supplemented by unconstrained HF cal-
culations on moderate-size clusters, implemented via Monte
Carlo–simulated annealing. The HF approximation is ex-
pected to gain accuracy whenever the ratio of electrostatic
energy to kinetic energy is small. Throughout the range of
parameters studied by us, this ratio never exceeds 0.15.
Moreover, since we deal with the case of fully polarized
electronic spins, the spatial part of the many-body wave
function is antisymmetric. This fact reduces correlation cor-
rections to the HF result which stem from the tendency of
any pair of electrons, owing to their mutual repulsion, to be
more distant from each other than the HF wave function
would indicate.

We close with a brief discussion of the experimental situ-
ation. To the best of our knowledge, a conclusive experimen-
tal observation of metallic stripes in phase-separated films of
CMR materials is yet to be made. We note, however, that
stripelike charge ordering on the atomic scale �charge-
density wave� was observed in a variety of manganates. This
includes films with different doping levels,43 as well as
ceramic44 and single-crystal45 samples in the insulating state
above x=0.5. In addition, it was suggested46 that the phase-
separated state in a three-dimensional system may acquire a
filament structure.

Nevertheless, we argue that it would be desirable to syn-
thesize manganate films whose phase-separated state clearly
exhibits metallic stripes. In addition to illustrating our theo-
retical picture, such systems are expected to display unique
and potentially useful properties, some of which were not
previously observed. One of these is an anisotropic conduc-
tance, whereby the stripes’ direction determines a low-
resistivity axis, which ought to be amenable to reorientation
by, e.g., applying a voltage. In general, one expects to find
history-dependent resistance and memory effects akin to and
probably more pronounced than those observed earlier in
phase-separated films,12,13 for which no evidence for stripes
was reported. When the sample composition gets close to the
one corresponding to a stable striped arrangement, weak per-
turbations such as external electric or magnetic fields may be
sufficient to change the geometry of the FM regions from
droplets to stripes, with a drastic change in transport proper-
ties in the form of colossal electroresistance due to
dielectrophoresis47 and large low-temperature magnetoresis-
tance.

Which manganate system could potentially exhibit a me-
tallic stripe order? In general, in order to look for such a state
one is interested to explore the parameter space by changing
the average carrier concentration x, the metallic area fraction
m, and the strength U of the Coulomb interaction.48 While x
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is determined by the dopant concentration, the experimen-
tally measurable quantity m depends, in our model, on the
ratio of the AFM coupling J to the hopping t. The latter may
be affected by, e.g., the choice of the rare-earth ion. An ex-
ample of a system which apparently allows control over the
value of m is �La1−yPry�1−xCaxMnO3. Three-dimensional
crystals of this compound with x between 0.25 and 0.5 are
metallic for y=0, with no signatures of phase separation at
low temperatures.3 At y=1, the system is phase separated49

and exhibits robust insulating behavior, presumably corre-
sponding to well-separated metallic droplets in an insulating
matrix. The properties of the phase-separated state change as
one decreases the value of y, and at y=0.7 it is possible to
observe conduction path formation and switching as a result
of an applied current.15 Similar behavior is also found in thin
films of the same compound, which at least for sufficiently
large values of y are phase separated,50 as reflected in their
peculiar dielectric and transport properties.51,52

These findings prompt us to suggest looking for signa-
tures of stripes in �La1−yPry�1−xCaxMnO3 films by systemati-
cally varying y and with it, as indicated above, the relative
area m of the metallic phase. We expect stripes to appear
around the point where the areas of metallic an insulating
phases are equal to each other. Besides
�La1−yPry�1−xCaxMnO3, there are other hole-doped mangan-
ate systems which may exhibit a stripe geometry of phase
separation; see Ref. 53. In addition, we expect our results to
be relevant for some electron-doped manganates,54 as well as
possibly for Eu-based magnetic semiconductors.6
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APPENDIX A: HARTREE–FOCK EQUATIONS FOR A
PERIODIC CONFIGURATION

The HF equations for n interacting spin-polarized elec-
trons may be written in matrix form as an effective eigen-
value equation, which needs to be solved self-consistently,55

�
r�

Hrr��sr� = s�sr, �A1�

where the effective Hamiltonian matrix is given by

Hrr� = hrr� + �
s=1

n

��rr��
r�

vrr���sr��
2 − vrr��sr�

� �sr� .

�A2�

The indices r, r�, and r� indicate positions on the lattice, hrr�
is the single-particle part of the Hamiltonian, and vrr� is the
interaction energy of a particle at site r and a particle at site
r�. �sr are the eigenvectors in lattice-site representation, each
indexed by label s and with s as its eigenvalue. The self-

consistent solution yields the HF ground-state energy, given
by

E =
1

2�
s=1

n

�s + �
rr�

�sr
� hrr��sr�� , �A3�

where the summation is over the n states with lowest eigen-
values s. For Hamiltonian �3� considered in the present
study, the single-particle term is

hrr� =
trr�

2
− �rr�Ux� dR

�r − R�
, �A4�

with an implicit dependence, given by Eq. �2�, of trr� on the
configuration of the core spins 
Sr�. The second term in Eq.
�A4� reflects the interaction between the conduction elec-
trons and a continuous neutralizing positive background of
density x=n /A, where A is the system area, via the Coulomb
potential vrr�=U / �r−r��. Noting that the eigenvectors are
normalized to unity, �r���sr��

2=1, and that the r=r� and r
=r� terms in Eq. �A2� are equal and opposite, we are led to
analyze the following HF Hamiltonian:

Hrr� =
trr�

2
+ U�

s=1

n ��rr��
r�

�1 − �rr�

�r − r��
−

1

A
� dR

�r − R�
���sr��

2

−
1 − �rr�

�r − r��
�sr�

� �sr� . �A5�

We are interested in cases where the core spins’ configu-
ration is periodic, such that the system can be divided into N
unit cells, each containing an identical configuration of spins
on M sites. Let the superlattice vectors 
l� identify the loca-
tion of the unit cells. A position r on the lattice can then be
written as r�l , i�= l+ri, where ri is the position within the
unit cell l, containing r. The spin periodicity implies that
Hrr� between sites r= l+ri and r�= l�+r j depends only on i,
j, and the superlattice vector l�= l�− l connecting the two unit
cells, i.e., Hrr�=Hij�l��. As a consequence of Bloch’s theo-
rem, this means that the energy eigenfunctions, expressed in
the �l , i� representation, take the form �bi�k�eik·l /�N, with
eigenenergies b�k�, where k is defined within the first Bril-
louin zone of the reciprocal superlattice. The “band” index b
runs from 1 to M, and �bi�k� is normalized to unity within a
single unit cell. Written in the �k , i� basis, the Hamiltonian
becomes block diagonal, where the matrix elements of the
block connecting states with the same k are given by

Hij�k� =
tij�k�

2
+

U

N
�
b,k�

��� − b�k��	��ij�
i�

vii�
H ��bi��k���2

− vij�k − k���bj
� �k���bi�k��� . �A6�

Here
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tij�k� = �
l

tij�l�e−ik·l �A7�

is the Fourier transform of the hopping amplitudes tij�l� be-
tween sites i and j in unit cells separated by a superlattice
vector l. We also introduced

vij�k� = �
l

1 − �ij�l,0

�l + ri − r j�
e−ik·l, �A8�

vii�
H = vii��0� −

1

Auc
� dR

�ri − R�
, �A9�

where Auc=A /N is the area of a unit cell. The chemical po-
tential � is defined by n=�b,k���−b�k�	, with ��x� denot-
ing the step function.

The HF ground-state energy of the conduction electrons is

Eel =
1

2�
b,k
�b�k� +

1

2�
ij

�bi
� �k�tij�k��bj�k����� − b�k�	

−
1

2
Unx� dR

�R�
, �A10�

where in the last term we have taken the limit N→�. This
diverging contribution is canceled by the self-interaction of
the positive background, evaluated in the same limit,

Ebg =
1

2
Ux2� dRdR�

�R − R��
=

1

2
Unx� dR

�R�
. �A11�

Consequently, the total energy �not including the contribu-
tion of the antiferromagnetic interaction between the core
spins� is given by the sum over b and k in Eq. �A10�.

In order to evaluate the matrix elements of the HF Hamil-
tonian, we need a method for calculating the infinite super-
lattice sums in Eqs. �A7�–�A9�. The first of these is trivial
since hopping is allowed only between nearest-neighbor sites
within a unit cell or between adjacent ones. In two dimen-
sions this leaves at most five terms to the sum. On the other
hand, the Coulomb interaction is long ranged, and an infinite
number of terms need to be included in Eqs. �A8� and �A9�.

1. Hartree term

Hartree interaction matrix �A9� includes two diverging
contributions, one coming from the interaction with the av-
erage electronic density and the other from the interaction
with the positive uniform background. The two contributions
cancel each other. In order to demonstrate this and extract the
remaining finite piece, we employ Ewald’s summation �see
Appendix B�. The main identity of this method, directly ap-
plicable to the evaluation of the first term in Eq. �A9�, is

�
l

1

�l + r�
=

2�

Auc
�

g

eig·r

�g�
erfc� �g�

2G
� + �

l

1

�l + r�
erfc�G�l + r�� .

�A12�

As before, l are the superlattice vectors and Auc is the unit-
cell area. Here, g are the reciprocal superlattice vectors, and

G is an arbitrary constant, chosen to minimize the number of
relevant terms in both sums controlled by the complementary
error function erfc�x�. Note that the divergence which stems
from summing over large l vectors in the left-hand side of
Eq. �A12� is encoded in the g=0 term on the right-hand side.
This divergence is canceled by the integral over the whole
system in Eq. �A9�. This can be readily seen by using Eq.
�A12� with G→�, writing it as

1

Auc
� dr

�r�
=

1

Auc
�

uc
dr�

l

1

�l + r�
=

2�

Auc
�

g

�g,0

�g�
. �A13�

Consequently we find for the Hartree matrix

vii�
H =

2�

Auc
�
g�0

eig·rii�

�g�
erfc� �g�

2G
� −

2��

AucG
+ �

l�0

1

�l + rii��
erfc�G�l

+ rii��� + �1 − �ii��
erfc�G�rii���

�rii��
− �ii�

2G
��

, �A14�

where rii�=ri−ri�.

2. Droplets’ Fock term

When the core spins are arranged in FM droplets sepa-
rated by an AFM-ordered background, the conduction elec-
trons cannot hop from one unit cell to the other, i.e., tij�l�
= tij�l,0. Consequently tij�k� is independent of k; see Eq.
�A7�. Under such a condition it is easy to verify that the HF
eigenfunctions and eigenenergies are k independent as well.
To prove this assertion, let us assume that it is true and show
that it leads to a k-independent HF Hamiltonian, hence clos-
ing the argument self-consistently. Since the Hartree term in
the HF Hamiltonian, Eq. �A6�, depends on k only through
the HF eigenfunctions, it obviously fulfills the requirement.
To complete the demonstration, we note that the same is true
for the Fock term since it satisfies

Hij
Fock�k� = −

U

N
�
b,k�

��� − b�vij�k − k���bi
� �bj

=− U�
b

��� − b�
1 − �ij

�ri − r j�
�bi

� �bj . �A15�

Moreover, Eq. �A15� implies that in the case of FM droplets
the calculation of the Fock term involves only a finite sum
�over the M states within each droplet�. This is a direct con-
sequence of the vanishing overlap between electronic states
in different droplets.

3. Stripes’ Fock term

When the core spins are arranged in a striped configura-
tion, hopping is allowed between unit cells along the direc-
tion of the stripes. In other words, if we decompose the su-
perlattice vectors as l=naa+nbb, where a and b are primitive
vectors along and off the stripe direction, respectively, then
tij�na ,nb�= tij�na��nb,0. As a result tij�k� depends only on the
k component along the stripes, i.e., tij�k�= tij�ka�. It follows
then, using the same reasoning presented above for the drop-
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let case, that the HF eigenfunctions and eigenenergies de-
pend only on ka, and the Fock term takes the form

Hij
Fock�ka� = −

U

Na
�
b,ka�

��� − b�ka��	�bi
� �ka���bj�ka��

� �
na

1 − �ij�na,0

�rij + naa�
eina�ka−ka��a, �A16�

where Na is the number of unit cells along the stripe, a= �a�,
and rij is the vector connecting sites i and j within a unit cell.

In contrast to the Hartree term where the interaction de-
cays slowly, the exponential factor in the Fock exchange, Eq.
�A16�, ensures that the series converges relatively fast.
Hence, the infinite sum is well approximated by assuming a
long but finite stripe. In our calculation, we used Na
=100–200 and verified that larger values change the ground-
state energy by an insignificant amount. Note that the loga-
rithmic divergence of the na sum in the case ka�=ka is inte-
grable and vanishes upon the summation over ka�.

APPENDIX B: EWALD’S SUMMATION IN TWO
DIMENSIONS

The development �based on Ref. 56� of Ewald’s summa-
tion method begins by defining the function

F�r,�� 
2

��
�

l
e−�l + r�2�2

, �B1�

where the vectors 
l� correspond to the N points of a two-
dimensional lattice of area A. F is a periodic function of r,
with the periodicity of the lattice. Therefore, it can be ex-
panded into the following Fourier series:

F�r,�� = �
g

Fg���eig·r, �B2�

where 
g� are the reciprocal lattice vectors, and

Fg��� =
2

��

1

A
� d2r�

l
e−�l + r�2�2

e−ig·r =
2

��

N

A
� d2re−�r�2�2−ig·r

=
2��

Auc�
2e−�g�2/4�2

. �B3�

Here, Auc=A /N is the area of a unit cell. Using Eqs. �B2� and
�B3� and the identity

1

�l + r�
=

2
��
�

0

�

d�e−�l + r�2�2
, �B4�

we obtain

�
l

1

�l + r�
=

2
��

�
l
�

0

�

d�e−�l + r�2�2

=
2��

Auc
�

g
�

0

G

d�
1

�2e−�g�2/4�2+ig·r

+
2

��
�

l
�

G

�

d�e−�l + r�2�2
, �B5�

where the integral was split into two at an arbitrary positive
value G. Finally, calculating the integrals leads to Eq. �A12�,
where the divergent piece of the original sum is given by the
g=0 term �and when r=0 also the l=0 term� in the new
representation. The remaining part of the infinite sums over g
and l is rapidly converging at a rate which is optimized by an
appropriate choice of G.
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